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Photoactivation of Cluster Catalysis: A Comparison of 1-Pentene Isomerization

by Tetracarbonyl (triphenylphosphine)ruthenium and 1,1,1,2,2,2,3,3,3-

Nonacarbonyl-1,2,3-tris(triphenylphosphine)-triangulo-triruthenium

James L. Graff, Robert D. Sanner, and Mark S. Wrighton*

Department of Chemistry
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

i Abstract: The photocatalyzed isomerization of 1-pentene to trans- and
: cis-2-pentene by Ru(C0)4PPh3 and Ru3(CO)9(PPh3)3 is reported along with

‘; data for Rus(C0),,,

Ru(C0)4PPh3 is dissociative loss of CO giving a coordinatively unsaturated

Fe3(C0)]2, and Fe(CO)S. The primary photoprocess in

: species having the same empirical formula as Ru3(C0)9(PPh3)3;the trinuclear
: species undergoes Ru-Ru bond rupture and ultimate declusterification
subsequent to photoexcitation giving a quantitative yield of Ru(CO)4PPh3

‘ under CO or Ru(C0)3(PPh3)2 in the presence of PPh3. The crucial result is
32 that the cluster yields a different catalytically active species compared to
Ru(C0)4PPh3, since the initial ratio of trans- and cis-2-pentene is different
for the two photocatalysts. The photocatalysis and primary photoprocesses
suggest that the isomerization from the Ru3(CO)9(PPh3)3 results from an
active form of the cluster. By way of contrast, Fe(CO)5 and Fe3(CO)]2

' yield the same initial ratio of photocatalytic products, “implicating a
common, mononuclear catalytic species. Since the clusters are good visible

absorbers compared to the mononuclear species, photoactivation of cluster

i catalysis can be effected with low energy visible light; initial product

| ratios are independent of wavelength, but quantum yields for olefin
isomerization are somewhat larger in the visible compared to near-uv excitation.
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Photoactivation of Cluster Catalysis: A Comparison of 1-Pentene Isomerization
by Tetracarbonyl(triphenylphosphine)ruthenium and 1,1,1,2,2,2,3,3,3- |
Nonacarbonyl-1,2,3-tris(triphenylphosphine Hriangulo-triruthenium i
Sip:

In this communication we wish to register two potential advantages of |
cluster precursors to photochemically generated catalysts. We wish to present
preliminary results demonstrating that (1) lower energy irradiation can be
used to activate catalysis by irradiation of a cluster compared to an
appropriate mononuclear analogue and (2) that the active species generated
from the cluster can operate on the substrate to give a substantially
different ratio of products. The latter result bears on the question of
whether cluster species can do unique chemistry relative to their mono-

nuclear fragments. We report a comparison of the photocatalyzed 1-pentene

isomerization by Ruy(C0)g(PPhy)3 and Ru(C0), (PPhy)."

Before detailing the results concerning the T1-pentene isomerization we
will delineate some of the essential photochemical and spectral properties of
the two catalyst precursors. Both complexes are thermally inert at 298°K,
but each is photosensitive. The absorption spectra of the two complexes is
included in Figure 1; Ru(CO)d(PPh3) is a pale yellow substance with only

tail absorption wavelengths longer than 300 nm, while Ru3(CO)9(PPh3)3

exhibits an intense visible absorption maximum at 506 nm (¢ ~ 14,000). The
ultraviolet absorption of the C3v Ru(CO)Q(PPhj) is logically a ligand field

transition which terminates in the dZE orbital which is strongly

2

o-antibonding. MNear uv, 355 nm, irradiation in the presence of added 0.1 M

PPh3 in benzene yields Ru(C0) PPhs) =1895 cm-]).3 and irradiation in the

3(PPh3)a (Vo
presence of 0.1M P(OMe)3 in benzene apparently yields Ru(C0)3(PPh3)(P(0Mo) )(VCOT

3
. |

1905 cm']) not Ru(C0)4(P(UMe)3). These results allow the conclusion that




<3s

loss of CO is the principal result of near-uv irradiation of Ru(CO)a(PPhJ).
equation (1). When CO is purged from the solution, l-pentene can scavenge

hv

35 nm
¢ = 0 33’0. 2
Ru(f0)¥(PPh3) to yield a very substitution labile l-pentene complex. But in

Ru(LO)a(llhj) Ru(LO)j(lth) + CO (1)
hermetically sealed benzene solutions of 1.76M 1-pentene, Ru(C0)4PPh3 underq
lTittle net reaction even at long irradiation times. Note that the coordinatively
unsaturated species generated has the same empirical formula as Ruj(CO)g(PPhj)j.
This fact is an important feature of the system under study, since we find that
visible irradiation of RUS(CO)Q(PPhj)S in the presence of L yields Ru((O)jPPhsl.

equation (2). Based on this photochemistry and the low energy of the first

) hv, 514.5 nm B ;
Ru3(CO)g(PPhy) 3 g P » 3Ru(C0)4PPh,L (

nN
~—

$ a 1072

absorption feature, we attribute the lowest energy absorption band to a
transition which involves the Ru orbitals and Tikely terminates in one which is
strongly 0"-antibonding with respect to the Ru-Ru bonds.]‘4 In the presence of
1.76M 1-pentene, irradiation of Ru3(C0)9(N‘h3)3 in benzene solution only vields
slow conversion to mononuclear complexes (¢ \10'4). We note that Yc(CO)b and
FeB(CO)‘2 are related to each other in the way that Ru(CO)a(PPhj) and
Ru3(C0)9(PPh3)3 are. The absorption spectra of fo(CO)5 and H3(CO)]2 are
included in Figure 1, and some of their photochemistry is given in reactions

(3) and (4).]‘56 From the quantum yields given in (1)-(4) it appears that

Fe(C0)5 --------------- > Fe(co)4 + CO (3)
355 nm, ¢ 1.0

hv -
M3(C0Ny2 (=co, atkene ——  M(CONgL (4)
031072
M = Fe, Ru
the clusters are qualitatively less efficiently decomposed than the mononuclear

complexes. Further. for the irradiation of the Ru phosphine complexes in the




presence of l-pentene we observe only very slow conversion to

any product. Though the detailed mechanism of

reactions (Z) and (4) is not clear, it can be speculated that cleavage of a

M—M bond is the primary chemical result of light absorption in the trinuclear species,

reaction (5), followed by (i) rapid reformation of the M—M bond (giving low

hv L
A== R ok
A

quantum yields) or (ii) dissociative and/or associative processes leading to

the mononuclear products. The possibility that the ring-opened trinuclear
species might interact with substrates prompted the comparison of photo-
catalytic properties of mononuclear and trinuclear species.

The cluster species M3(C0)]2 (M = Fe, Ru), and Ru3(C0)9(PPh3b all photo-

catalyze reaction (6) upon visible light excitation which is not absorbed by the

}
h —
; AN Iheta* complex] AR //——-\\h——— (6)

Fe or Ru mononuclear complexes. This establishes one important advantage

P a—

for the cluster vs. mononuclear precursors. The ability to initiate the
catalytic action in the visible may allow catalysis of a wider range of substrates

in that many organic substances are sensitive to ultraviolet light.

The particulars of the 1-pentene isomerization according to eq. (6) are

given in the Table. A1l of the catalyst precursors are capable of moving high

concentrations of 1-pentene toward the thermodynamic ratio7 of the linear pentenes,

i demonstrating turnover numbers (number of 1-pentene molecules consumed per
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metal atom initially present) which are at least 103. Further, observed
initial quantum yields, ¢, (number of T-pentene molecules isomerized per
incident photon) are high and often exceed unity, evidencing the photogeneration
of a thermally active catalyst which turns over a number of times.

depends on the catalyst precursor used. In particular, there is a marked
difference between photocatalysis by Ru(CO)q(PPh3) and Ru3(CO)9(PPh3)3. This
result reveals that whatever the actual catalytic species are, they are
different for the two precursors. The initial ratio of the 2-pentenes from

the clusters appears to be independent of the excitation wavelength, but modest
differences in quantum yield are found. The data from the photochemical
reactions, catalytic chemistry, and the comparison with Ru(CO)4PPh3 compel us
to conclude that Ru3(CO)9(PPh3)3 yields a cluster as the actual active species.
While it is our opinion that the catalytically active species results from

the formation of the diradical in equation (5), it is possible that the
catalyst actually results from loss of CO or PPh3 as the primary photoprocess.
The similarity of the ratio of 2-pentenes from Fe(CO)5 and Fe3((20)]2 is
consistent with catalytic action only from mononuclear species. Infrared
spectral studies show that for all of the clusters studied here, mononuclear
catalysts, or at least precursors to catalysts, must ultimately result upon

prolonged visible light irradiation.
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Table. Photocatalyzed 1-Pentene lsomerization.®
Catalyst Irrdn A, mm % Conv. N (trans/cis)
Precursor :
Ru{C0) PP D 355 5.7 3.1 2.3
14.9 2.7 220
Ru,(C0)4(PPh,) 355 2.3 0. 4.3
IR LR 10.0 0.9 3.4
430 6.7 [ 3.0
13.7 1.9 2.9
550 6.9 - 3.3
12.0 .= 3+
Ruj(co)]. 355 2.7 5.5 S
" 13.8 5.0 6.2
4306 8.4 V3 L
14.6 12 7.0
b
Fc(CO)3 355 6.2 91 2.8
14.1 107 2.8
Fej(CO)]‘ 355 T 27 0
- 13.4 26 2.8
436 8.5 41 2.9
1750 33 2.8
550 8.7 --- 3.0
13.9 --- 2.9

AN experiments carried out at 298°K in degassed, 1.76 M 1-pentene,

benzene solution containing 1 x 10-'M catalyst precursor. Quantum yields,

¢, are + 20%, and the ratio of trans- to cis-2-pentene products,

(trans/cis), is +10%. Irradiation at 550 or 436 mm was carried out using

an appropriately filtered 550 W Hanovia Hg lamp and at 355 nm using a GE

Blacklite. Light intensities at 436 or 355 nm were in the range

1 x100% = 1 x 100 ein/min. A1l analyses were carried out using vapor

phase chromatography and each entry represents the average of at
least two analyses.

bNote that for these .species 1 x 10'3N does not completely absorb all

incident photons at 355 nm in the 1.0 cm path Tength ampules used to
contain the samples. The &'s have not been corrected in any way to
account for this transmission of incident light. We take ¢ to be the




—

Figure.

Comparison of the absorption spectra of various catalyst

precursors in benzene solution at 293°K.
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